If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49p^2+5=86
We move all terms to the left:
49p^2+5-(86)=0
We add all the numbers together, and all the variables
49p^2-81=0
a = 49; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·49·(-81)
Δ = 15876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{15876}=126$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-126}{2*49}=\frac{-126}{98} =-1+2/7 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+126}{2*49}=\frac{126}{98} =1+2/7 $
| 1/2x+2/3=3/3/2 | | –2c=–c+7 | | 51=5x+1 | | 7x+x=6+30 | | -7(-6x+2)=4(-6+8x) | | u+12/17=3 | | 3(x+2)+4x=15 | | 4/5y-9=9 | | 38=u-16 | | 7-5u=22 | | 2-4x=6x=+12 | | 12x+12=18x-10x | | 38=p+19 | | 3w=10w*9 | | 2(v-5)=9v-38 | | 6x-7=8x+2-2x | | d+5=3d | | 81n^2+10=19 | | 6x+20+x+40+4x=5 | | 15m-36=12m | | 81n^2+10= | | y/4+5=-5 | | m/6-9=2 | | 7x/3=3x-4/8 | | 3(w-7=-12 | | 145+50+c=180 | | 12x-5x+8=2 | | 2(x+6)+4(x+18)=6 | | 2-4x=6=+12 | | 4y−y=3 | | x+40+6x+20=180 | | 0.2(r+50)-6=0.4(3r+20) |